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Endothelial Mechanaobiology

e Endothelial cells cover the luminal surface of the vasculature
A collection of intertwined stresses

* Contact stresses emanating from physical features of the underlying
substrate
* Substrate topography, curvature, stiffness

* Fluid-derived stresses due to blood flow
* Shear (frictional] stress on the apical surface of endothelial cells,
compressive blood pressure, circumferential (hoop) stresses




Endothelial Mechanobiology
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Endothelial Mechanobiology
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Blood flow

* Blood is a non-Newtonian fluid
« At sufficiently low shear rates [(below 100s™) exhibits shear-thinning

* Time-averaged wall shear stress: 1Pa (aorta) to 5 Pa [arterioles]
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Blood flow

* Undisturbed flow is laminar flow
* Disturbed flow: turbulent or laminar flow with spatial shear stress
gradient and vortices
* Vascular curvature, branching, bifurcations
* Many vascular diseases occur in these regions: atherosclerosis,
thrombosis, etc.
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Blood cells
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Pressure and stresses

Blood pressure varies along the vasculature
* From 1.3 kPa (veins] to 16 kPa [aorta)
* Hypertension: 27 kPa
* Pulsatile on the arterial side, dampened in capillaries

* Alignment, elongation, cytoskeletal reorganization, proliferation

* Axial tensile stresses: tissue growth or movement: up to 20% strain

* Circumferential stresses: transmural pressure difference that dilates the
vessels cyclically: up to 15% strain

* Physiological range: 5-10% strain




Features of tensile stresses
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How do endothelial cells sense forces?

* Mechanosensitive ion channels

* Primary cilia

* (Cadherins and integrins

* Notch complex
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Anatomy and mechanical homeostasis
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Anatomy and mechanical homeostasis

* (Usmotic pressure .
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* Electrostatic potential
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Microfabricated blood vessels
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Microfabricated blood vessels
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Microfabricated blood vessels
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Microfabricated blood vessels

e
? Microvasculature
Cell loading ' formation
e ——— B ——

]
y. 4 ﬂ Endothelial

cells

>

Static S-N Flow

1 Sprouting channel (S)

HVN channel (N)

Angiogenesis
_—

t

VEGF

N-S Flow

17



Microfabricated blood vessels

* Angiogenic sprouting
* Nascent vs mature vessels
* Leader cells and follower cells ([mesenchymal vs epithelial phenotype)
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Matrix Mechanobiology

Cartilage and chondrogenesis
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Matrix Mechanobiology

Collagen-coated glass (2D)
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Matrix Mechanaobiology

Communication by mechanochemical signal conversion
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Fibroblast traction and tissue remodelling

findings in S49 cells suggest a new and somewhat ¢
approach for the xenogenization of malignant lympho
Here, the isolation of immunogenic, non-tumorigenic
based on a simple selection for substrate adherence. The
of the cell-surface change(s) that took place on transitic
free-floating to substrate-adhering, non-tumorigenic, ir
oenic S49 cells is being investisated. Furthermore. it is

Culturing cells on thin distortable sheets of
silicone rubber

1nese tracuon Tneias resemoi€e raul welss cenire €erects,
which lends support to his theories of nerve guidance® but
suggests that guidance should be towards foci of strong traction
rather than high growth rate. Our findings also point to fibro-
plast traction as the cause for the apparent contraction of
collagen networks around deep wounds, burns and surgically
mplanted prostheses®'.

We Td assumed originally that substratum distortion was
merely bn[(Rtd@ntal by-product of cell locomotion, useful for
studying its mechanism. However, these results suggest that
traction has evolved to serve morphogenetic functions going

2 could still distort the rubber sheet, but only when

MAL prowcuye Immumry Iis associaea win  cen-meaare
mechanisms. We have now examined the capacity of leukocyte
from immune cattle to lyse parasitized lymphoblastoid an
non-parasitized tumour cell lines either directly or after stimu
lation in an autologous mixed lymphocyte reaction (MLR). I
contrast to the nonspecific lytic activity of leukocytes fror
immune cattle reported by Pearson et al.”, we describe th
sequential appearance in the lymph and blood of immune cattle
of cytotoxic leukocytes with activity restricted to target cell
carrying the autologous genotype. These observations sugges
that a major component of protective immunity to T. parva i

[P | PO I NS PRV PN N | P NN R T e FL R RO | PR SN

Fibroblasts exert forces very much larger than those actually needed for locomotion.
This strong traction distorts collagen gels dramatically, creating patterns similar to
tendons and organ capsules. We propose that this morphogenetic rearrangement of
extracellular matrices is the primary function of fibroblast traction and explains its
excessive strength.
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Fibroblast traction and tissue remodelling

The alignment of collagen between explants
results in the orientation of fibroblasts migrating
from the explants in the same direction.
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Cell patterning in ECM

BlauiCLl \vallll, L1707, U1allld, L77.2), WWiHldul LIIHIUILGIL allld DLUIEIG I walu
biasing of cell motion (Trinkaus, 1982; Englander & Davies, 1979; Gail &
Boone, 1970; Gould, Selwood, Day & Wolpert, 1974).

While all of these mechanisms probably act at some point in development, it
is not clear how they conspire to generate organized spatial aggregations of cells.
In this paper we will describe a simple mechanism by which patterned aggregates
of motile cells can come about. The mechanism we shall describe is speculative
in the sense that we have not demonstrated unequivocally that embryonic pat-

Mesenchymal cells within embryos nearly all have a capacity for autonomous
locomotion which is analogous to that of amoebae, but is perhaps best described as
crawling. The individual cells move by exerting forces upon their surroundings, which
generally consist of a fibrous extracellular matrix and the surfaces of other cells.
These tractions require that the moving cell has established anchor points to its
substratum. The traction forces are exerted by cellular extensions, often flattened,
which Abercrombie termed 'leading lamellae' [Harris, 1983). Most cells have several
of these protrusions extending in opposing directions. Since the traction exerted by
each is directed centripetally, the result is a tug-of-war with net cell displacement
occurring at the direction of the lamellae with the strongest tension, and/or the
strongest adhesions to the substratum.




Cell patterning in ECM

* Cells can be passively dragged along by the contractions of its immediate
neighbours, or ride on the substratum which is being dragged by the contractions
of distant cells.

* Moatile cells will move from less adhesive to more adhesive regions of their
substrata

* Numerous experiments have shown that cells will follow geometrical cues in their
substratum, such as aligned fibres, grooves, curvature, etc.

* Spreading and migrating cells can exert extremely large traction forces on their
substratum.

* A previously isotropic ECM, when seeded with contractile cells, will not remain
iIsotropic: the cells' contractions create strain guidance cues and adhesive
gradients which guide the surrounding cells inward toward the centre of
contraction.

* The cell tractions are in mechanical equilibrium with the elastic forces of the
matrix material. NO INERTIA!

* \Within an aligned matrix, such as a collagen gel, cells will configure themselves
such that their long axis is in the same direction as the matrix orientation

25



Cell patterning in ECM

G. F. OSTER, J. D. MURRAY AND A. K. HARRIS

rate of change in matrix density
in a small volume element

} = [flux in] - {lux out] (10

\dding a term to the right-hand side of (10) we could also account for matri
etion by the cells. However, we shall assume for simplicity that, on the time¢
> of cell movements we are interested in, matrix secretion is negligible.

quations (7), (8) and (10) comprise a complete model for cell motion in ar
tic ECM. While the mathematical structure of the corresponding equation:
ved in Appendix A appears complicated (it is), the physical interpretatior




Force-mediated cell recruitment

Spatial ranges of:  Chemotaxis Peak ECM Furthest Mo MF-induced
deformation attraction deformation field
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Feather pattern development
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Feather pattern development

Uniform traction when adequately resisted

leads to an array of aggregates force causes translocation of -catenin
[field of dermal cells from above] [cross-section of tissue bilayer]
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Feather pattern development

TISSUE

CELLS

Dissociate dermal tissue Resuspended cells Cells form ring
plated on collagen

Isotropic Alignment Ordered Cell-ECM layer Periodic multicellular
cells + ECM along pattern axis (active fluid) aggregates

Contractile cells  Aligned ECM increases Contractile
align ECM contractility through Ca2* instability
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Engineered tissue folding
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Engineered tissue folding
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ECM fibers as mechanochemical switches

* Fiber stretching
* Increases the Young's modulus of the fiber [strain-stiffening]
* Activate cryptic sites
* Activate fibrillogenesis
* Destroy binding sites
* Enzymatic degradation

Resting Stretched Anastellin

40 A : ' 150 A
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ECM fibers as mechanochemical switches

* Fiber stretching
* Increases the Young's modulus of the fiber [strain-stiffening]
* Activate cryptic sites
* Activate fibrillogenesis
* Destroy binding sites
* Enzymatic degradation

, Relaxation kinetics
0T 0 s"\,,_

KN pulling forces

FN
solution




Discrete fiber networks

* Electrospinning Dextran fibers
e Substrates with tunable mechanics and architecture
* Many adjustable parameters: material compaosition, speed, etc.
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Discrete fiber networks

* Electrospinning Dextran fibers
e Substrates with tunable mechanics and architecture
 Surface functionalization for cell adhesion
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Fiber remodeling

* Single cell and multicellular spreading

Fibre networks Collagen matrices Hydrogels
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Hydrogels

Fibre networks

Elasticity

* Soft vs stiff substrates
* 2D hydrogels vs fibrillar matrices
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Fiber recruitment

* Pulling fibers, scaffolding, pulling again
* Plastic deformation
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Engineered Fibre Networks: Cell migration

Slingshot migration: elastic energy in migration

c Contact guidance
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Engineered Fibre Networks: Magnetic manipulation




Engineered Fibre Networks: Cell migration
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Engineered Fibre Networks: Cell migration
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Engineered Fibre Networks: Calcium signaling

Calcium entry and release of stored calcium into the cytoplasm
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Discrete fibre networks

 Before and after shear deformation
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Discrete fibre networks
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Long range force transmission

matrices
* Maximum principal strain.

Interactions of pairs of contractile cells in neo-Hookean and fibrous

* Lengths of red lines represent the magnitude of the maximum principle
strain and their orientations show the directions of fiber alignment.
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Plasticity

* Formation of weak crosslinks enhanced at increasing stretch ratio
* Association and dissociations rates

kott = Eszexp((xmax —1)/%)
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Plasticity

2.0 3.0
Concentration (mg/mL)

2.0 3.0
Concentration (mg/mL)

150 pm

After Eliminating Contractility

Onset of Eliminating Contractility

30%

* Permanent elongation of fibers d
e Strain rate and amplitude and mechanical
properties of fibers

Applied Strain
Amplitude, &

5%

Fibre Yield
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40% 10+ Rate, € (min-)
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Matrix viscoplasticity

a Cellular process restricted by confinement
Volume change Morphological Combination
Cell growth Cell spreading Cell migration
A
< -
\
Matrix deposition Mitosis Organoid formation

O 18

Matrix pore size
A

Confinement

»

Matrix degradability

Matrix viscoplasticity
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Matrix mechanics
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Engineering biomimetic biomaterials

e (Combinatorial effects of various factors

= ECM Fibre
s A ctomyosin cytoskeleton

O  Focal adhesion

Crosslinking density

Low High Low High Soft Stiff Viscoelastic  Elastic
—a Adhesive ligand —— Non-degradable network —&&— Non-covalent bond
== Degradable network === Covalent bond

@ Proteolytic enzyme
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3D culture models of tissues under tension

* (CellECM compaction

1. Spreading

LB

2. Lamellipodia extension and
binding to collagen fiber

3. Lamellipodia retraction and
fiber recruitment

S—

N .
= e

4. Fiber release and stabilization

Fibroblast-populated collagen lattice

After seeding After compaction

Constrained microtissue

After seeding After compaction
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3D culture models of tissues under tension

* Microfabricated tissue gauges

SU-8 Photoresist
on Silicon Wafer

Replicate with
PDMS

Add collagen
and cells

Centrifuge cells .
into wells

£ 0 2

Remove excess
collagen and
cells
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3D culture models of tissues under tension

NIH 3T3 microtissue remodeling 10 -

t= 3hr:0 min

» .

Microtissue Tension (micronewtons)
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Time (hrs)

15

25
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Mechanical characterization

—_
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Mechanical characterization
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gap closure

Contractile tissue mechanics

f-assembly

Cell /collagen suspension Tissue sel

Mlicrofabricated device
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Contractile tissue mechanics: gap closure

* (Cell crawling? Purse-string?

Relative closure rate

AU/h

Cell recruitment Cell alignment Closure through cell influx and
fibronectin recruitment

Reinforcement
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Tissue fibrosis

(i) Homeostasis

Epithelial cells
(v) Resolution (ii) Injury
Loss of fibrotic ECM
and myofibroblasts.

Epithelial growth.

. N
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Inflammation .

- B
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4, Loose interstitial TP g e

matrix

(iv) Fibrosis
Crosslinked

(vi) Chronic
injury

Damaged
Epithelial cells

persistence Aligned stiff matrix

Myofibroblast

ECM deposition,
alignment, crosslinking enzymes
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Tissue fibrosis

Injury Inflammation

Macrophages, dendritic cels
lymphocytes

Scarring (fibrosis)

Vascular
remodeling/
angiogenesis
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Tissue fibrosis
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Platforms to study fibrosis

Stiffness

-

Dimensionality
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Platforms to study fibrosis

a b h

Membranous Engineered membranous
alveolar sac walls lung microtissue

Lung Micropillars
C I
Four leaflet — large Single leaflet — Single leaflet — c
medium size small size !

Micropillars —

S/t ratio = 32 S/t ratio =18 S/tratio=9
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Platforms to study fibrosis

Nucleus

Collagen Nucleus

S/tratio = 28

d Untreated TGF-B1
300 | = @= Untreated
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